姓名:卢其楷
职称、职务:讲师
电子邮箱:luqikai@hubu.edu.cn
通信地址:武汉市武昌区友谊大道368号华人策略celue
联系电话: 027-88661699
主要研究方向:遥感影像处理、城市遥感、机器学习
教育背景:
2007-2011 武汉大学 遥感信息工程学院 学士
2011-2016 武汉大学 测绘遥感信息工程国家重点实验室 博士
工作经历:
2016-2019 武汉大学电子信息学院
2019-今 华人策略celue
教学课程:遥感概论、模式识别
主要社会兼职:IEEE GRSL、IEEE JSTARS等国内外期刊审稿人
荣誉和获奖情况:
1 第九届“共享杯”科技资源共享服务创新大赛 全国一等奖 优秀指导教师奖
2 湖北大学第九届青年教师教学竞赛 理科组一等奖
3 湖北大学第四届教师教学创新大赛 二等奖
代表作(*通讯作者)
发表SCI、SSCI等论文30余篇,谷歌学术累计被引3000余次,H-index=19。
Lu, Q., Liu, H., Wei, L.*, Zhong, Y. and Zhou, Z., 2024. Global prediction of gross primary productivity under future climate change. Science of The Total Environment, 912, p.169239.
Lu, Q., Xie, Y.*, Wei, L., Wei, Z., Tian, S., Liu, H. and Cao, L., 2024. Extended Attribute Profiles for Precise Crop Classification in UAV-Borne Hyperspectral Imagery. IEEE Geoscience and Remote Sensing Letters, 21, p.3348462.
He, W., Xiao, Z., Lu, Q.*, Wei, L. and Liu, X., 2024. Digital Mapping of Soil Particle Size Fractions in the Loess Plateau, China, Using Environmental Variables and Multivariate Random Forest. Remote Sensing, 16(5), p.785.
Lu, Q., Tian, S. and Wei, L.*, 2023. Digital mapping of soil pH and carbonates at the European scale using environmental variables and machine learning. Science of the Total Environment, 856, p.159171.
Lu, Q., Lv, T., Wang, S. and Wei, L.*, 2023. Spatiotemporal Variation and Development Stage of CO2 Emissions of Urban Agglomerations in the Yangtze River Economic Belt, China. Land, 12(9), p.1678.
Tian, S., Lu, Q.* and Wei, L., 2022. Multiscale superpixel-based fine classification of crops in the UAV-based hyperspectral imagery. Remote Sensing, 14(14), p.3292.
Lu, Q., Si, W.*, Wei, L., Li, Z., Xia, Z., Ye, S. and Xia, Y., 2021. Retrieval of water quality from UAV-borne hyperspectral imagery: A comparative study of machine learning algorithms. Remote Sensing, 13(19), p.3928.
Lu, Q. and Wei, L.*, 2021. Multiscale superpixel-based active learning for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 19, pp.1-5.
Lu, Q.* and Hu, X., 2020. Hyperspectral image classification via exploring spectral–spatial information of saliency profiles. IEEE Journal of selected topics in applied earth observations and remote sensing, 13, pp.3291-3303.
胡轩, 卢其楷*, 2020. 基于显著性剖面的高光谱图像分类算法. 光学学报, 40(16), p.1611001.
Chen, H., Xue, N., Zhang, Y., Lu, Q.* and Xia, G.S., 2019. Robust visible-infrared image matching by exploiting dominant edge orientations. Pattern Recognition Letters, 127, pp.3-10.
Xia, G.S., Huang, J., Xue, N., Lu, Q.* and Zhu, X., 2019. GeoSay: A geometric saliency for extracting buildings in remote sensing images. Computer Vision and Image Understanding, 186, pp.37-47.
Luo, N., Wan, T., Hao, H. and Lu, Q.*, 2019. Fusing high-spatial-resolution remotely sensed imagery and OpenStreetMap data for land cover classification over urban areas. Remote Sensing, 11(1), p.88.
Zhang, X., Xia, G.S., Lu, Q.*, Shen, W. and Zhang, L., 2018. Visual object tracking by correlation filters and online learning. ISPRS Journal of Photogrammetry and Remote Sensing, 140, pp.77-89.
Lu, Q., Ma, Y. and Xia, G.S.*, 2017. Active learning for training sample selection in remote sensing image classification using spatial information. Remote Sensing Letters, 8(12), pp.1210-1219.
Wan, T., Lu, H., Lu, Q. * and Luo, N.*, 2017. Classification of high-resolution remote-sensing image using openstreetmap information. IEEE Geoscience and Remote Sensing Letters, 14(12), pp.2305-2309.
Lu, Q., Huang, X.*, Liu, T. and Zhang, L., 2016. A structural similarity-based label-smoothing algorithm for the post-processing of land-cover classification. Remote Sensing Letters, 7(5), pp.437-445.
Lu, Q., Huang, X.*, Li, J. and Zhang, L., 2016. A novel MRF-based multifeature fusion for classification of remote sensing images. IEEE Geoscience and Remote Sensing Letters, 13(4), pp.515-519.
Lu, Q., Huang, X.* and Zhang, L., 2014. A novel clustering-based feature representation for the classification of hyperspectral imagery. Remote Sensing, 6(6), pp.5732-5753.
承担(主持)的主要科研项目
湖北省大中城市典型地物要素遥感识别方法研究,湖北省自然科学基金
深度学习框架下的湖北省典型城市地物要素分类,湖北省教育厅科学技术研究计划